Stereochemical preferences for chiral substrates by the bacterial phosphotriesterase.
نویسندگان
چکیده
The bacterial phosphotriesterase from Pseudomonas diminuta catalyzes the hydrolysis of organophosphate nerve agents such as paraoxon (diethyl p-nitrophenyl phosphate) with a turnover number of approximately 10(4) s(-1). The active site of the enzyme has been shown to be composed of a binuclear Zn2+ complex with a bridging hydroxide. The utilization of chiral phosphotriesters has demonstrated that the overall hydrolytic reaction occurs with net inversion of stereochemistry at the phosphorus center. The stereochemical constraints of the active site have been probed by the synthesis and characterization of paraoxon analogs. One or both of the two ethoxy substituents of paraoxon have been replaced with various combinations of methyl, isopropyl, or phenyl groups. Racemic mixtures and individual enantiomers were tested as substrates for the phosphotriesterase. In general, the kinetic constants (k(cat) and k(cat)/Km) for the (-)-enantiomers were one to two orders of magnitude greater than the (+)-enantiomer. Conversely, acetylcholinesterase was more rapidly inactivated by the (+)-enantiomers than the (-)-enantiomers. These results were examined in the context of the three-dimensional structure of the bacterial phosphotriesterase.
منابع مشابه
Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues.
The factors that govern the substrate reactivity and stereoselectivity of phosphotriesterase (PTE) toward organophosphotriesters containing various combinations of methyl, ethyl, isopropyl, and phenyl substituents at the phosphorus center were determined by systematic alterations in the dimensions of the active site. The wild type PTE prefers the S(P)-enantiomers over the corresponding R(P)-ena...
متن کاملStereochemical constraints on the substrate specificity of phosphotriesterase.
A series of achiral, chiral, and racemic mixtures of paraoxon analogues containing various combinations of methyl, ethyl, isopropyl, or phenyl substituents were synthesized as probes of the stereochemical constraints within the active site of phosphotriesterase. The kinetic constants for these paraoxon analogues with the enzyme varied significantly with the size of substituents surrounding the ...
متن کاملStructural determinants of the substrate and stereochemical specificity of phosphotriesterase.
Bacterial phosphotriesterase (PTE) catalyzes the hydrolysis of a wide variety of organophosphate nerve agents and insecticides. Previous kinetic studies with a series of enantiomeric organophosphate triesters have shown that the wild type PTE generally prefers the S(P)-enantiomer over the corresponding R(P)-enantiomers by factors ranging from 1 to 90. The three-dimensional crystal structure of ...
متن کاملComputational study in Regioselectivie Synthesis of New Spiro-oxindolopyrrolidines
One-pot, four-component procedure for the synthesis of a small library of new chiral spiro- oxindolopyrrolidines with high regio-, diastereo- (>99:1 dr), and enantioselectivity (up to 80% ee) is described. In this process, the regio- and stereochemical 1,3-dipolar cycloaddition of azomethine ylides, which were generated insitu by the reaction of isatin derivatives and sarcosin,with optically ac...
متن کاملResolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.
An array of 16 enantiomeric pairs of chiral phosphate, phosphonate, and phosphinate esters was used to establish the breadth of the stereoselective discrimination inherent within the bacterial phosphotriesterase and 15 mutant enzymes. For each substrate, the leaving group was 4-hydroxyacetophenone while the other two groups attached to the phosphorus core consisted of an asymmetric mixture of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemico-biological interactions
دوره 119-120 شماره
صفحات -
تاریخ انتشار 1999